Casimir force in non-planar geometric configurations by Cho S.N.

By Cho S.N.

The Casimir strength for charge-neutral, ideal conductors of non-planar geometric configurations were investigated. The configurations have been: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the round shell. The ensuing Casimir forces for those actual preparations were came across to be appealing. The repulsive Casimir strength stumbled on via Boyer for a round shell is a distinct case requiring stringent fabric estate of the field, in addition to the explicit boundary stipulations for the wave modes in and out of the field. the mandatory standards indetecting Boyer's repulsive Casimir strength for a sphere are mentioned on the finish of this thesis.

Show description

Vorlesungen ueber Differentialgeometrie. by Blaschke W.

By Blaschke W.

Es handelt sich hier um die verschiedenen Arten der Kugelgeometrie,die sich alle einbauen lassen in die sogenannte höhere Kugelgeometrie von Lie und auf deren Boden systematisch zusammengefaßt werden können. Die allgemeine Kugelgeometrie liefert ein Beispiel zur Auseinandersetzung der Ideen von Kleins Erlanger Programm, das an Schlagkraft dem der projektiven Geometrie gleichwertig, ja, wenn guy zu den schwierigeren Fragen der Differentialgeometrie übergeht, sogar überlegen erscheint. Besonders handelt es sich urn die Darstellung der Inversionsgeometrie des Raumes (oder, wie wir sagen wollen, urn die Kugelgeometrie von Mobius) und um die Kugelgeometne von Laguerre. Diese letztere Gruppe ist heute für die Physik als Gruppe der speziellen Relativitätstheorie wichtig geworden. Von der Kugelgeometrie aus gewinnt guy aber weiter auch Einblick in die verschiedenen Zweige der nichteuklidischen Geometrie.

Show description

Glimpses of Algebra and Geometry, Second Edition by Gabor Toth

By Gabor Toth

Past variation offered 2000 copies in three years; Explores the sophisticated connections among quantity idea, Classical Geometry and smooth Algebra; Over a hundred and eighty illustrations, in addition to textual content and Maple records, can be found through the net facilitate realizing:; comprises an insert with 4-color illustrations; contains a variety of examples and worked-out difficulties

Show description

Riemannian geometry in an orthogonal frame: from lectures by Elie Cartan, S. P. Finikov, Vladislav V. Goldberg, S. S.

By Elie Cartan, S. P. Finikov, Vladislav V. Goldberg, S. S. Chern

Elie Cartan's publication "Geometry of Riemannian Manifolds" (1928) was once the best introductions to his tools. It was once in line with lectures given via the writer on the Sorbonne within the educational 12 months 1925-26. A modernized and greatly augmented variation seemed in 1946 (2nd printing, 1951; third printing, 1988). Cartan's lectures in 1926-27 have been various - he brought external kinds on the very starting and used orthogonal frames all through to enquire the geometry of Riemannian manifolds. during this path, he solved a sequence of difficulties in Euclidean and non-Euclidean areas, in addition to a chain of variational difficulties on geodesics. The lectures have been translated into Russian within the booklet "Riemannian Geometry in an Orthogonal body" (1960). This booklet has many inventions, akin to the thought of intrinsic basic differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional area or in an area of continuing curvature, an affine connection outlined in a standard fibre package of a submanifold, etc. This ebook used to be on hand neither in English nor in French. It has now been translated into English through Vladislav V. Goldberg, at the moment exclusive Professor of arithmetic on the New Jersey Institute of expertise, united states, who edited the Russian version.

Show description